99 research outputs found

    On the extraction, ordering, and usage of landmarks in planning

    Get PDF
    Many known planning tasks have inherent constraints concerning the best order in which to achieve the goals. A number of research efforts have been made to detect such constraints and use them for guiding search, in the hope to speed up the planning process. We go beyond the previous approaches by dening ordering constraints not only over the (top level) goals, but also over the sub-goals that will arise during planning. Landmarks are facts that must be true at some point in every valid solution plan. We show how such landmarks can be found, how their inherent ordering constraints can be approximated, and how this information can be used to decompose a given planning task into severa smaller sub-tasks. Our methodology is completely domain- and planner-independent. The implementation demonstrates that the approach can yield significant performance improvements in both heuristic forward search and GRAPHPLAN-style planning

    Improving delete relaxation heuristics through explicitly represented conjunctions

    Get PDF
    Heuristic functions based on the delete relaxation compute upper and lower bounds on the optimal delete-relaxation heuristic h+, and are of paramount importance in both optimal and satisficing planning. Here we introduce a principled and flexible technique for improving h+, by augmenting delete-relaxed planning tasks with a limited amount of delete information. This is done by introducing special fluents that explicitly represent conjunctions of fluents in the original planning task, rendering h+ the perfect heuristic h* in the limit. Previous work has introduced a method in which the growth of the task is potentially exponential in the number of conjunctions introduced. We formulate an alternative technique relying on conditional effects, limiting the growth of the task to be linear in this number. We show that this method still renders h+ the perfect heuristic h* in the limit. We propose techniques to find an informative set of conjunctions to be introduced in different settings, and analyze and extend existing methods for lower-bounding and upper-bounding h + in the presence of conditional effects. We evaluate the resulting heuristic functions empirically on a set of IPC benchmarks, and show that they are sometimes much more informative than standard delete-relaxation heuristics

    Star-Topology Decoupling in SPIN

    Get PDF

    Practical undoability checking via contingent planning

    Get PDF
    We consider a general concept of undoability, asking whether a given action can always be undone, no matter which state it is applied to. This generalizes previous concepts of invertibility, and is relevant for search as well as applications. Naïve undoability checking requires to enumerate all states an action is applicable to. Extending and operationalizing prior work in this direction, we introduce a compilation into contingent planning, replacing such enumeration by standard techniques handling large belief states. We furthermore introduce compilations for checking whether one can always get back to an at-least-as-good state, as well as for determining partial undoability, i. e., undoability on a subset of states an action is applicable to. Our experiments on IPC benchmarks and in a cloud management application show that contingent planners are often effective at solving this kind of problem, hence providing a practical means for undoability checking

    BSE infectivity in jejunum, ileum and ileocaecal junction of incubating cattle

    Get PDF
    To establish bovine spongiform encephalopathy (BSE) public health protection measures it is important to precisely define the cattle tissues considered as specified risk materials (SRM). To date, in pre-clinical BSE infected cattle, no evidence of the BSE agent had been found in the gut outside of the ileal Peyer's Patches. This study was undertaken to determine when and where the pathological prion protein (PrPSc) and/or BSE infectivity can be found in the small intestine of cattle 4 to 6 months of age, orally challenged with BSE. Samples of the jejunum, the ileum and the ileocaecal junction from 46 BSE infected cattle, culled from 1 up to 44 months post infection (mpi) were examined by immunohistochemistry. Samples from cattle 8 mpi to 20 mpi were additionally studied by PTA Western blot, rapid tests, and by mouse (TgbovXV) bioassay. In doing so nearly all of the cattle, from 4 up to 44 mpi, had detectable amounts of PrPSc and/or infectivity in the distal ileum. In the distal ileum clear time-dependent variations were visible concerning the amount of PrPSc, the tissue structures affected, and the cells involved. BSE infectivity was found not only in the ileum and ileocaecal junction but also in the jejunum. The systematic approach of this study provides new data for qualitative and quantitative risk assessments and allows defining bovine SRM more precisely

    Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

    Get PDF
    Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore